首页> 外文OA文献 >Tracking in Aerial Hyperspectral Videos using Deep Kernelized Correlation Filters
【2h】

Tracking in Aerial Hyperspectral Videos using Deep Kernelized Correlation Filters

机译:利用深度核心化跟踪空中高光谱视频   相关滤波器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hyperspectral imaging holds enormous potential to improve thestate-of-the-art in aerial vehicle tracking with low spatial and temporalresolutions. Recently, adaptive multi-modal hyperspectral sensors, controlledby Dynamic Data Driven Applications Systems (DDDAS) methodology, have attractedgrowing interest due to their ability to record extended data quickly from theaerial platforms. In this study, we apply popular concepts from traditionalobject tracking - (1) Kernelized Correlation Filters (KCF) and (2) DeepConvolutional Neural Network (CNN) features - to the hyperspectral aerialtracking domain. Specifically, we propose the Deep Hyperspectral KernelizedCorrelation Filter based tracker (DeepHKCF) to efficiently track aerialvehicles using an adaptive multi-modal hyperspectral sensor. We address lowtemporal resolution by designing a single KCF-in-multiple Regions-of-Interest(ROIs) approach to cover a reasonable large area. To increase the speed of deepconvolutional features extraction from multiple ROIs, we design an effectiveROI mapping strategy. The proposed tracker also provides flexibility to coupleit to the more advanced correlation filter trackers. The DeepHKCF trackerperforms exceptionally with deep features set up in a synthetic hyperspectralvideo generated by the Digital Imaging and Remote Sensing Image Generation(DIRSIG) software. Additionally, we generate a large, synthetic, single-channeldataset using DIRSIG to perform vehicle classification in the Wide Area MotionImagery (WAMI) platform . This way, the high-fidelity of the DIRSIG software isproved and a large scale aerial vehicle classification dataset is released tosupport studies on vehicle detection and tracking in the WAMI platform.
机译:高光谱成像具有巨大的潜力,可改善低时空分辨率的航空器跟踪技术。近来,由动态数据驱动应用系统(DDDAS)方法控制的自适应多模态高光谱传感器因其能够从空中平台快速记录扩展数据的能力而引起了越来越多的关注。在这项研究中,我们将传统对象跟踪中的流行概念应用于(1)核化相关滤波器(KCF)和(2)深度卷积神经网络(CNN)功能–应用于高光谱空中跟踪领域。具体来说,我们提出了一种基于深度高光谱核相关滤波器的跟踪器(DeepHKCF),以使用自适应多模态高光谱传感器来有效地跟踪飞行器。我们通过设计单个KCF多个兴趣区域(ROI)方法来覆盖合理的大面积区域,来解决低时空分辨率问题。为了提高从多个ROI进行深度卷积特征提取的速度,我们设计了一种有效的ROI映射策略。所提出的跟踪器还提供了灵活性以耦合到更高级的相关滤波器跟踪器。 DeepHKCF跟踪器在由数字成像和遥感图像生成(DIRSIG)软件生成的合成高光谱视频中设置的深层功能中表现出色。此外,我们使用DIRSIG生成大型综合单通道数据集,以在广域运动影像(WAMI)平台中执行车辆分类。这样,就提高了DIRSIG软件的高保真度,并发布了大规模的航空器分类数据集,以支持WAMI平台中的车辆检测和跟踪研究。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号